of the phase transformation in cerium \mathbf{Q}_{Cd} calculated from the formula *R.p. 352 where $q_{\rm Hg}$ is the heat of fusion of 1 g of mercury according to Bridgman's data /9/ at the temperature of the experiment,/K is the ratio of the areas of the differential record of the thermograms ($S_{\rm Ce}:S_{\rm Hg}$). The average value of Q_{Ce} from the three series of experiments (a new pairs of samples and new thermocouples were taken for each series) equals 880 ± 40 cal/g-atom. ## Discussion of Results The results of the present investigation confirm the identity of the type of cerium formed at high pressures with the low-temperature form. Earlier Trombe and Foex /11/ xx studied the behavior of cerium at low temperatures and observed/ its transformation at 109°K, with a 10% fall in volume. In connection with this it was first suggested in /2/ that the form of cerium found by Trombe and Foex was identical with that discovered by Bridgman /1/ at high pressure. Two papers were later published in support of this view. Shuch and Sturdivant /12/ reported their earlier x-ray diffraction study of the crystal structure of cerium at 90°K. ^{*} We consider the cerium transformation as completed since the pressure in our experiments went up to 13,000 kg/cm²; at this pressure the less dense form could not be detected by x-ray diffraction. (see /2/).